Sympathetic and angiotensin-dependent hypertension during cage-switch stress in mice

Author:

Lee Dexter L.,Webb R. Clinton,Brands Michael W.

Abstract

The goal of this study was to determine the dependence of the acute hypertensive response to a novel model of acute psychosocial stress on the sympathetic and renin-angiotensin systems. Baseline mean arterial pressure (MAP), heart rate (HR), and locomotor activity were measured with telemetry in mice for a 1-h period and averaged 98 ± 1 mmHg, 505 ± 3 beats/min, and 5 ± 1 counts, respectively. Stress was induced by placing a mouse into a cage previously occupied by a different male mouse, and this increased MAP, HR, and activity in the control group by 40 ± 2 mmHg, 204 ± 25 beats/min, and 68 ± 6 counts, respectively. Each variable gradually returned to baseline levels by 90 min after beginning cage switch. Pretreatment with terazosin (10 mg/kg ip) significantly reduced the initial increase in MAP to 12 ± 6 mmHg, whereas MAP for the last 45 min was superimposable on control values. Atenolol (10 mg/ml drinking water) had no effect to blunt the initial increase in MAP but had a growing effect from 10 min onward, decreasing MAP all the way to baseline by 60 min after starting cage switch. Captopril (2 mg/ml drinking water) treatment caused a very similar response. All three treatments significantly decreased the area under the blood pressure curve, and the blood pressure effect could not be attributed uniformly to effects on HR or activity. These data suggest that our novel model of psychosocial stress causes an initial α1-receptor-dependent increase in MAP. The later phase of the pressor response is blocked similarly by a β1-receptor antagonist and an ACE inhibitor, independent of HR, suggesting that the β1-dependent blood pressure effect is due, in large part, to the renin-angiotensin system.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3