Acute β-adrenergic stimulation does not alter mitochondrial protein synthesis or markers of mitochondrial biogenesis in adult men

Author:

Robinson Matthew M.1,Richards Jennifer C.1,Hickey Matthew S.1,Moore Daniel R.2,Phillips Stuart M.2,Bell Christopher1,Miller Benjamin F.1

Affiliation:

1. Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado; and

2. Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada

Abstract

Exercise-induced expression of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is dramatically inhibited in mice pretreated with a β-adrenergic receptor (β-AR) antagonist, suggesting that β-ARs play an important role in the regulation of skeletal muscle PGC-1α expression, and potentially, mitochondrial biogenesis. Accordingly, we hypothesized that acute β-AR stimulation would induce transcriptional pathways involved in skeletal muscle mitochondrial biogenesis in humans. Whole body protein turnover (WBPT), myofibrillar protein synthesis (MyPS), skeletal muscle mitochondrial protein synthesis (MiPS), and mitochondrial biogenic signaling were determined in samples of vastus lateralis obtained on two separate occasions in 10 young adult males following 1 h of continuous intravenous administration of saline (CON) or a nonspecific β-AR agonist [isoproterenol (ISO): 12 ng·kg fat free mass−1·min−1], combined with coinfusion of [1,2]13C-leucine. β-AR stimulation induced appreciable increases in heart rate and systolic blood pressure (both P < 0.001) but did not affect mitochondrial biogenic signaling (no change in PGC-1α, TFAM, NRF-1, NRF-2, COX, or NADHox expression via RT-PCR; P > 0.05). Additionally, MiPS [CON: 0.099 ± 0.028, ISO: 0.074 ± 0.046 (mean ± SD); P > 0.05] and MyPS (CON: 0.059 ± 0.008, ISO: 0.055 ± 0.009; P > 0.05), as well as measures of WBPT were unaffected. On the basis of this investigation, we conclude that acute intravenous β-AR stimulation does not increase mitochondrial protein synthesis or biogenesis signals in skeletal muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3