Diversified cardiovascular actions of six homologous natriuretic peptides (ANP, BNP, VNP, CNP1, CNP3, and CNP4) in conscious eels

Author:

Nobata Shigenori1,Ventura Albert1,Kaiya Hiroyuki2,Takei Yoshio1

Affiliation:

1. Laboratory of Physiology, Ocean Research Institute, University of Tokyo, Tokyo, Japan; and

2. Department of Biochemistry, National Cardiovascular Center Research Institute, Suita, Osaka, Japan

Abstract

The natriuretic peptide (NP) family consists of seven paralogs [atrial NP (ANP), brain NP (BNP), ventriclar NP (VNP), and C-type NP 1–4 (CNP1–4)] in teleosts, but relative biological activity of the seven NPs has not been comprehensively examined using homologous peptides. In this study, we newly identified CNP3 and CNP4 in eels to use homologous peptides, but the CNP2 gene may have been silenced in this species. The CNP4 gene was expressed exclusively in the brain as CNP1, but the CNP3 gene, from which cardiac ANP, BNP, and VNP were generated by tandem duplication, was most abundantly expressed in the pituitary, suggesting its local action. All NPs induced hypotension dose dependently after intra-arterial injection with a potency order of ANP > VNP > BNP > CNP4 > CNP1 = CNP3. The degree of hypotension was similar at the ventral and dorsal aorta, indicating similar actions on the branchial and systemic circulation. The hypotension induced by cardiac NPs was longer lasting than CNPs, probably because of the difference in preferential receptors. Among cardiac NPs, the hypotensive effect of VNP lasted much longer than those of ANP and BNP, even though VNP disappeared from the blood more quickly than ANP. To analyze the unique effect of VNP, we examined possible involvement of the autonomic nervous system using ANP, VNP, and CNP3. β-adrenergic blockade diminished hypotensive effects of all three NPs, but α-adrenergic and cholinergic blockade enhanced only the effect of VNP, suggesting a specific mechanism for the VNP action. The NP-induced tachycardia was diminished by all blockers examined. Furthermore, the cardiovascular action of VNP was not impaired by a blocker of NP receptor, HS-142-1. Taken together, the homologous NPs exhibit diverse cardiovascular actions in eels partially through the autonomic nervous system, and the unique VNP action may be mediated by a novel receptor that has not been identified in teleosts.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3