Systemic inflammation and remote organ damage following bilateral femur fracture requires Toll-like receptor 4

Author:

Levy Ryan M.,Prince Jose M.,Yang Runkuan,Mollen Kevin P.,Liao Hong,Watson Gregory A.,Fink Mitchell P.,Vodovotz Yoram,Billiar Timothy R.

Abstract

Extensive soft tissue injury and bone fracture are significant contributors to the initial systemic inflammatory response in multiply injured patients. Systemic inflammation can lead to organ dysfunction remote from the site of traumatic injury. The mechanisms underlying the recognition of peripheral injury and the subsequent activation of the immune response are unknown. Toll-like receptors (TLRs) recognize microbial products but also may recognize danger signals released from damaged tissues. Here we report that peripheral tissue trauma initiates systemic inflammation and remote organ dysfunction. Moreover, this systemic response to a sterile local injury requires toll-like receptor 4 (TLR4). Compared with wild-type (C3H/HeOuJ) mice, TLR4 mutant (C3H/HeJ) mice demonstrated reduced systemic and hepatic inflammatory responses to bilateral femur fracture. Trauma-induced nuclear factor (NF)-κB activation in the liver required functional TLR4 signaling. CD14−/− mice failed to demonstrate protection from fracture-induced systemic inflammation and hepatocellular injury. Therefore, our results also argue against a contribution of intestine-derived LPS to this process. These findings identify a critical role for TLR4 in the rapid recognition and response pathway to severe traumatic injury. Application of these findings in an evolutionary context suggests that multicellular organisms have evolved to use the same pattern recognition receptor for surviving traumatic and infectious challenges.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3