Thermoregulatory responses to lipopolysaccharide in the mouse: dependence on the dose and ambient temperature

Author:

Rudaya Alla Y.,Steiner Alexandre A.,Robbins Jared R.,Dragic Alexander S.,Romanovsky Andrej A.

Abstract

Most published studies of thermoregulatory responses of mice to LPS involved a stressful injection of LPS, were run at a poorly controlled and often subneutral ambient temperature (Ta), and paid little attention to the dependence of the response on the LPS dose. These pitfalls have been overcome in the present study. Male C57BL/6 mice implanted with jugular vein catheters were kept in an environmental chamber at a tightly controlled Ta. The relationship between the Tas used and the thermoneutral zone of the mice was verified by measuring tail skin temperature, either by infrared thermography or thermocouple thermometry. Escherichia coli LPS in a wide dose range (100-104μg/kg) was administered through an extension of the jugular catheter from outside the chamber. The responses observed were dose dependent. At a neutral Ta, low (just suprathreshold) doses of LPS (100-101μg/kg) caused a monophasic fever. To a slightly higher dose (101.5μg/kg), the mice responded with a biphasic fever. To even higher doses (101.75-104μg/kg), they responded with a polyphasic fever, of which three distinct phases were identified. The dose dependence and dynamics of LPS fever in the mouse appeared to be remarkably similar to those seen in the rat. However, the thermoregulatory response of mice to LPS in a subthermoneutral environment is remarkably different from that of rats. Although very high doses of LPS (104μg/kg) did cause a late (latency, ∼3 h) hypothermic response in mice, the typical early (latency, 10–30 min) hypothermic response seen in rats did not occur. The present investigation identifies experimental conditions to study LPS-induced mono-, bi-, and polyphasic fevers and late hypothermia in mice and provides detailed characteristics of these responses.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3