Ghrelin inhibits skeletal muscle protein breakdown in rats with thermal injury through normalizing elevated expression of E3 ubiquitin ligases MuRF1 and MAFbx

Author:

Balasubramaniam Ambikaipakan,Joshi Rashika,Su Chunhua,Friend Lou Ann,Sheriff Sulaiman,Kagan Richard J.,James J. Howard

Abstract

We previously determined that ghrelin synthesis was downregulated after burn injury and that exogenous ghrelin retained its ability both to stimulate food intake and to restore plasma growth hormone levels in burned rats. These observations and the finding that anabolic hormones can attenuate skeletal muscle catabolism led us to investigate whether ghrelin could attenuate burn-induced skeletal muscle protein breakdown in rats. These studies were performed in young rats (50–60 g) 24 h after ∼30% total body surface area burn injury. Burn injury increased total and myofibrillar protein breakdown in extensor digitorum longus (EDL) muscles assessed by in vitro tyrosine and 3-methyl-histidine release, respectively. Continuous 24-h administration of ghrelin (0.2 mg·kg−1·h−1) significantly inhibited both total and myofibrillar protein breakdown in burned rats. Ghrelin significantly attenuated burn-induced changes in mRNA expression of IGFBP-1 and IGFBP-3 in liver. In EDL, ghrelin attenuated the increases in mRNA expression of the binding proteins, but had no significant effect on reduced expression of IGF-I. Ghrelin markedly reduced the elevated mRNA expression of TNF-α and IL-6 in EDL muscle that occurred after burn. Moreover, ghrelin normalized plasma glucocorticoid levels, which were elevated after burn. Expression of the muscle-specific ubiquitin-ligating enzyme (E3) ubiquitin ligases MuRF1 and MAFbx were markedly elevated in both EDL and gastrocnemius and were normalized by ghrelin. These results suggest that ghrelin is a powerful anticatabolic compound that reduces skeletal muscle protein breakdown through attenuating multiple burn-induced abnormalities.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference67 articles.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3