Predominant cause of prolonged low-frequency force depression changes during recovery after in situ fatiguing stimulation of rat fast-twitch muscle

Author:

Watanabe Daiki12,Wada Masanobu1

Affiliation:

1. Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan; and

2. Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan

Abstract

To investigate time-dependent changes in sarcoplasmic reticulum (SR) Ca2+ release and myofibrillar (my-) Ca2+ sensitivity during recovery from prolonged low-frequency force depression (PLFFD), rat gastrocnemius muscles were electrically stimulated in situ. After 0 h (R0), 0.5 h (R0.5), 2 h (R2), 6 h (R6), or 12 h of recovery, the superficial gastrocnemius muscles were excised and used for biochemical and skinned fiber analyses. At R0, R0.5, R2, and R6, the ratio of force at 1 Hz to that at 50 Hz was decreased in the skinned fibers. The ratio of depolarization-induced force to the maximum Ca2+-activated force (depol/Ca2+ force ratio) was utilized as an indicator of SR Ca2+ release. At R0, both the depol/Ca2+ force ratio and my-Ca2+ sensitivity were decreased. At R0.5 and R2, my-Ca2+ sensitivity was recovered, while the depol/Ca2+ force ratio remained depressed. At R6, my-Ca2+ sensitivity was decreased again, whereas the depol/Ca2+ force ratio was nearly restored. Western blot analyses demonstrated that decreased my-Ca2+ sensitivity at R6 and reduced depol/Ca2+ force ratio at R0, R0.5, and R2 were accompanied by depressions in S-glutathionylated troponin I and increases in dephosphorylated ryanodine receptor 1, respectively. These results indicate that, in the early stage of recovery, reduced SR Ca2+ release plays a primary role in the etiology of PLFFD, whereas decreased my-Ca2+ sensitivity is involved in the late stage, and suggest that S-glutathionylation of troponin I and dephosphorylation of ryanodine receptor 1 contribute, at least partly, to fatiguing contraction-induced alterations in my-Ca2+ sensitivity and SR Ca2+ release, respectively.

Funder

Grants-in-Aid for Science Research of Japan

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3