Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb

Author:

De Blasio Miles J.,Gatford Kathryn L.,Robinson Jeffrey S.,Owens Julie A.

Abstract

Intrauterine growth restriction (IUGR) is associated with accelerated growth after birth. Together, IUGR and accelerated growth after birth predict reduced lean tissue mass and increased obesity in later life. Although placental insufficiency is a major cause of IUGR, whether it alters growth and adiposity in early postnatal life is not known. We hypothesized that placental restriction (PR) in the sheep would reduce size at birth and increase postnatal growth rate, fat mass, and feeding activity in the young lamb. PR reduced survival rate and size at birth, with soft tissues reduced to a greater extent than skeletal tissues and relative sparing of head width ( P < 0.05 for all). PR did not alter absolute growth rates (i.e., the slope of the line of best fit for age vs. parameter size from birth to 45 days of age) but increased neonatal fractional growth rates (absolute growth rate relative to size at birth) for body weight (+24%), tibia (+15%) and metatarsal (+18%) lengths, hindlimb (+23%) and abdominal (+19%) circumferences, and fractional growth rates for current weight ( P < 0.05) weekly throughout the first 45 days of life. PR and small size at birth reduced individual skeletal muscle weights and increased visceral adiposity in absolute and relative terms. PR also altered feeding activity, which increased with decreasing size at birth and was predictive of increased postnatal growth and adiposity. In conclusion, PR reduced size at birth and induced catch-up growth postnatally, normalizing weight and length but increasing adiposity in early postnatal life. Increased feeding activity may contribute to these alterations in growth and body composition following prenatal restraint and, if they persist, may lead to adverse metabolic and cardiovascular outcomes in later life.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3