Aminopeptidase-A. II. Genomic cloning and characterization of the rat promoter

Author:

Jiang Qingping1,Troyanovskaya Marta1,Jayaraman Gomathi1,Healy Dennis P.1

Affiliation:

1. Department of Pharmacology, Mount Sinai School of Medicine of the City University of New York, New York, New York 10029

Abstract

Aminopeptidase-A (APA) has a widespread tissue distribution consistent with a role in the metabolism of circulating or locally produced ANG II or CCK-8. APA is also highly expressed in pre-B lymphocytes, but its role in lymphoid cell development is unknown. To begin to understand the basis for cell-specific regulation of APA expression, we sought to clone and characterize the rat gene promoter. Screening of a rat genomic library with a partial rat APA cDNA resulted in isolation of a 12-kb clone found to contain the first exon and >3 kb of 5′-flanking sequence. Primer extension of rat kidney mRNA indicated that the major transcription start site was 312 bp upstream of the translation start codon and 22 bp downstream from a TATA box. Constructs containing portions of the 5′-flanking region placed upstream of a chloramphenicol acetyltransferase reporter gene indicated that expression was cell specific and that high activity could be obtained with constructs containing as little as 110 bp of 5′-flanking region sequence. We further identified an upstream regulatory element between −1063 and −348 that suppressed transcription in a cell-specific manner. This element (termed upstream suppressor of APA, or USA) also suppressed transcription of a heterologous promoter. These results indicate that the organization and regulation of the rat APA is not consistent with it being a housekeeping gene and further suggest that rat APA gene transcription might be regulated through the presence of a novel strong upstream suppressor element.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3