Synthesis of gill Na+-K+-ATPase in Atlantic salmon smolts: differences in α-mRNA and α-protein levels

Author:

D'Cotta Helena1,Valotaire Claudiane1,le Gac Florence1,Prunet Patrick1

Affiliation:

1. Laboratoire de Physiologie des Poissons, Institut National de la Recherche Agronomique, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

Several parameters were analyzed to determine the mechanisms responsible for the enhancement of the gill Na+-K+-ATPase activity of Atlantic salmon smolts. A major α-subunit transcript of 3.7 kb was revealed by Northern blot in both parr and smolt gills when hybridized with two distinct cDNA probes. The α-mRNA abundance demonstrated an increase to maximal levels in smolts at an early stage of the parr-smolt transformation. This was followed by a gradual rise in α-protein levels, revealed by Western blots with specific antibodies and by an increase in gill Na+-K+-ATPase hydrolytic activity, both only reaching maximum levels a month later, at the peak of the transformation process. Parr fish experienced a decrease in α-mRNA abundance and had basal levels of α-protein and enzyme activity. Measurement of the binding of [3H]ouabain to Na+-K+-ATPase was characterized in smolts and parr gill membranes showing more than a twofold elevation in smolts and was of high affinity in both groups (dissociation constant = 20–23 nM). Modulation of the enzyme due to increased salinity was also observed in seawater-transferred smolts, as demonstrated by an increase in α-mRNA levels after 24 h with a rise in Na+-K+-ATPase activity occurring only after 11 days. No qualitative change in α-expression was revealed at either the mRNA or protein level. Immunological identification of the α-protein was performed with polyclonal antibodies directed against the rat α-specific isoforms, revealing that parr, freshwater, and seawater smolts have an α3-like isoform. This study shows that the increase in Na+-K+-ATPase activity in smolt gills depends first on an increase in the α-mRNA expression and is followed by a slower rise in α-protein abundance that eventually leads to a higher synthesis of Na+-K+pumps.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3