eNOS knockout mouse as a model of fetal growth restriction with an impaired uterine artery function and placental transport phenotype

Author:

Kusinski Laura C.1,Stanley Joanna L.2,Dilworth Mark R.1,Hirt Cassandra J.2,Andersson Irene J.2,Renshall Lewis J.1,Baker Bernadette C.1,Baker Philip N.2,Sibley Colin P.1,Wareing Mark1,Glazier Jocelyn D.1

Affiliation:

1. Maternal and Fetal Health Research Centre, School of Biomedicine, Manchester Academic Health Science Centre, The University of Manchester, St. Mary's Hospital, Manchester, United Kingdom; and

2. Faculty of Medicine and Dentistry, University of Alberta, Alberta, Edmonton, Canada

Abstract

Fetal growth restriction (FGR) is the inability of a fetus to reach its genetically predetermined growth potential. In the absence of a genetic anomaly or maternal undernutrition, FGR is attributable to “placental insufficiency”: inappropriate maternal/fetal blood flow, reduced nutrient transport or morphological abnormalities of the placenta (e.g., altered barrier thickness). It is not known whether these diverse factors act singly, or in combination, having additive effects that may lead to greater FGR severity. We suggest that multiplicity of such dysfunction might underlie the diverse FGR phenotypes seen in humans. Pregnant endothelial nitric oxide synthase knockout (eNOS−/−) dams exhibit dysregulated vascular adaptations to pregnancy, and eNOS−/− fetuses of such dams display FGR. We investigated the hypothesis that both altered vascular function and placental nutrient transport contribute to the FGR phenotype. eNOS−/− dams were hypertensive prior to and during pregnancy and at embryonic day (E) 18.5 were proteinuric. Isolated uterine artery constriction was significantly increased, and endothelium-dependent relaxation significantly reduced, compared with wild-type (WT) mice. eNOS−/− fetal weight and abdominal circumference were significantly reduced compared with WT. Unidirectional maternofetal 14C-methylaminoisobutyric acid (MeAIB) clearance and sodium-dependent 14C-MeAIB uptake into mouse placental vesicles were both significantly lower in eNOS−/− fetuses, indicating diminished placental nutrient transport. eNOS−/− mouse placentas demonstrated increased hypoxia at E17.5, with elevated superoxide compared with WT. We propose that aberrant uterine artery reactivity in eNOS−/− mice promotes placental hypoxia with free radical formation, reducing placental nutrient transport capacity and fetal growth. We further postulate that this mouse model demonstrates “uteroplacental hypoxia,” providing a new framework for understanding the etiology of FGR in human pregnancy.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3