Tissue kallikrein deficiency and renovascular hypertension in the mouse

Author:

Griol-Charhbili Violaine,Sabbah Laurent,Colucci Juliana,Vincent Marie-Pascale,Baudrie Véronique,Laude Dominique,Elghozi Jean-Luc,Bruneval Patrick,Picard Nicolas,Meneton Pierre,Alhenc-Gelas François,Richer Christine

Abstract

The kallikrein kinin system (KKS) is involved in arterial and renal functions. It may have an antihypertensive effect in both essential and secondary forms of hypertension. The role of the KKS in the development of two-kidneys, one-clip (2K1C) hypertension, a high-renin model, was investigated in mice rendered deficient in tissue kallikrein (TK) and kinins by TK gene inactivation (TK−/−) and in their wild-type littermates (TK+/+). Four weeks after clipping the renal artery, blood flow was reduced in the clipped kidney (2K1C-TK+/+: −90%, 2K1C-TK−/−: −93% vs. sham-operated mice), and the kidney mass had also decreased (2K1C-TK+/+: −65%, 2K1C-TK−/−: −66%), whereas in the unclipped kidney, blood flow (2K1C-TK+/+: +19%, 2K1C-TK−/−: +17%) and kidney mass (2K1C-TK+/+: +32%, 2K1C-TK−/−: +30%) had both increased. The plasma renin concentration (2K1C-TK+/+: +78%, 2K1C-TK−/−: +65%) and renal renin content of the clipped kidney (2K1C-TK+/+: +58%, 2K1C-TK−/−: +65%) had increased significantly. There was no difference for these parameters between 2K1C-TK+/+ and 2K1C-TK−/− mice. Blood pressure monitored by telemetry and by plethysmography, rose immediately after clipping in both genotypes, and reached similar levels (2K1C-TK+/+: +24%, 2K1C-TK−/−: +21%). 2K1C-TK+/+ and 2K1C-TK−/− mice developed similar concentric left ventricular hypertrophy (+24% and +17%, respectively) with normal cardiac function. These findings suggest that in the context of chronic unilateral reduction in renal blood flow, TK and kinins do not influence the trophicity of kidneys, the synthesis and secretion of renin, blood pressure increase, and cardiac remodeling due to renin angiotensin system activation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3