Expression regulation of Na+-K+-ATPase α1-subunit subtypes in zebrafish gill ionocytes

Author:

Liao Bo-Kai,Chen Ruo-Dong,Hwang Pung-Pung

Abstract

In zebrafish ( Danio rerio), six distinct Na+-K+-ATPase (NKA) α1-subunit genes have been identified, and four of them, zatp1a1a.1, zatp1a1a.2, zatp1a1a.4, and zatp1a1a.5, are expressed in embryonic skin where different types of ionocytes appear. The present study attempted to test a hypothesis of whether these NKA α1 paralogues are specifically expressed and function in respective ionocytes. Double fluorescence in situ hybridization analysis demonstrated the specific expression of zatp1a1a.1, zatp1a1a.2, and zatp1a1a. 5 in NKA-rich (NaR) cells, Na+-Clcotransporter (NCC)-expressing cells, and H+-ATPase-rich (HR) cells, respectively, based on the colocalization of the three NKA α1 genes with marker genes of the respective ionocytes (epithelial Ca2+channel in NaR cells; NCC in NCC cells; and H+-ATPase and Na+/H+exchanger 3b in HR cells). The mRNA expression (by real-time PCR) of zatp1a1a.1, zatp1a1a.2, and zatp1a1a.5 were, respectively, upregulated by low-Ca2+, low-Cl, and low-Na+freshwater, which had previously been reported to stimulate uptake functions of Ca2+, Cl, and Na+. However, zatp1a1a.4 was not colocalized with any of the three types of ionocytes, nor did its mRNA respond to the ambient ions examined. Taken together, zATP1a1a.1, zATP1a1a.2, and zATP1a1a.5 may provide driving force for Na+-coupled cotransporter activity specifically in NaR, NCC, and HR cells, respectively.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3