Signaling for myocardial depression in hemorrhagic shock: roles of Toll-like receptor 4 and p55 TNF-α receptor

Author:

Meng Xianzhong,Ao Lihua,Song Yong,Raeburn Christopher D.,Fullerton David A.,Harken Alden H.

Abstract

Hemorrhagic shock causes myocardial contractile depression. Although this myocardial disorder is associated with increased expression of tumor necrosis factor-α (TNF-α), the role of TNF-α as a myocardial depressant factor in hemorrhagic shock remains to be determined. Moreover, it is unclear which TNF-α receptor mediates the myocardial depressive effects of TNF-α. Toll-like receptor 4 (TLR4) regulates cellular expression of proinflammatory mediators following lipopolysaccharide stimulation and may be involved in the tissue inflammatory response to injury. The contribution of TLR4 signaling to tissue TNF-α response to hemorrhagic shock and TLR4’s role in myocardial depression during hemorrhagic shock are presently unknown. We examined the relationship of TNF-α production to myocardial depression in a mouse model of nonresuscitated hemorrhagic shock, assessed the influence of TLR4 mutation, resulting in defective signaling, on TNF-α production and myocardial depression, and determined the roles of TNF-α and TNF-α receptors in myocardial depression using a gene knockout (KO) approach. Hemorrhagic shock resulted in increased plasma and myocardial TNF-α (4.9- and 4.5-fold, respectively) at 30 min and induced myocardial contractile depression at 4 h. TLR4 mutation abolished the TNF-α response and attenuated myocardial depression (left ventricular developed pressure of 43.0 ± 6.2 mmHg in TLR4 mutant vs. 30.0 ± 3.6 mmHg in wild type, P < 0.05). TNF-α KO also attenuated myocardial depression in hemorrhagic shock, and the p55 receptor KO, but not the p75 receptor KO, mimicked the effect of TNF-α KO. The results suggest that TLR4 plays a novel role in signaling to the TNF-α response during hemorrhagic shock and that TNF-α through the p55 receptor activates a pathway leading to myocardial depression. Thus TLR4 and the p55 TNF-α receptor represent therapeutic targets for preservation of cardiac mechanical function during hemorrhagic shock.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3