Insulin-like growth factor I prevents corticosteroid-induced diaphragm muscle atrophy in emphysematous hamsters

Author:

Fournier Mario,Huang Zhi-Shen,Li Hongyan,Da Xiaoyu,Cercek Bojan,Lewis Michael I.

Abstract

The aim of this study was to evaluate whether recombinant human insulin-like growth factor I (rhIGF-I) could attenuate or prevent diaphragm (DIA) fiber atrophy with corticosteroid (CS) administration to emphysematous (EMP) hamsters. DIA muscle IGF-I responses to CS administration with and without exogenous rhIGF-I administration were evaluated. Three groups were studied: 1) EMP; 2) EMP + triamcinolone (T; 0.4 mg·kg-1·day-1 im); and 3) EMP + T + IGF-I (600 μg/day by constant infusion). After 4 wk, the DIA was analyzed histochemically and biochemically (IGF-I mRNA levels by RT-PCR and endogenous and exogenous IGF-I peptide levels immunochemically). Body weights of EMP-T progressively decreased, while those of EMP and EMP-T-IGF-I remained stable despite similarly reduced food intake in both T groups. DIA weight was reduced with T but preserved with rhIGF-I infusion. DIA fiber proportions were similar among the groups. The cross-sectional areas of types I, IIa, and IIx fibers were reduced (17 to 31%) with T administration but unchanged with rhIGF-I infusion. DIA IGF-I mRNA levels were similar across all groups. By contrast, the endogenous DIA IGF-I levels were reduced (41%) in the EMP-T-IGF-I animals. Total DIA IGF-I levels (endogenous + exogenous) were still significantly reduced. IGF-I immunoreactivity confirmed this reduction in all DIA fibers. We conclude that DIA fiber atrophy with T was completely prevented by exogenous rhIGF-I administration. This effect was likely mediated by the pharmacological influences of exogenously administered rhIGF-I. We speculate that this results from increased bioavailability of free IGF-I to react with muscle receptors. Reduced endogenous IGF-I levels in the DIA likely reflect a negative-feedback influence. These results may have important clinical implications for treatment options to offset the adverse effects of CS on the respiratory muscles in patients with chronic lung disorders.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3