Influence of genetic knockout of Pept2 on the in vivo disposition of endogenous and exogenous carnosine in wild-type and Pept2 null mice

Author:

Kamal Mohamed A.,Jiang Huidi,Hu Yongjun,Keep Richard. F.,Smith David E.

Abstract

Carnosine (β-alanyl-l-histidine), an endogenous dipeptide substrate of the proton-coupled oligopeptide transporter PEPT2, plays an important role in many physiological processes. This study examined the effect of PEPT2 on the disposition of endogenous and exogenous carnosine in wild-type and Pept2 null mice. After exogenous dosing of [3H]carnosine (1 nmol/g iv bolus), a marked increase was observed in its systemic clearance in Pept2 null mice (0.50 vs. 0.29 ml/min), resulting in a decreased systemic exposure of dipeptide (area under the curve = 43.7 vs. 73.0 min×μM). Carnosine uptake was substantially reduced in the kidney of Pept2 null mice, and renal clearance increased 18-fold in this genotype (206 vs. 11.5 μl/min). Fractional reabsorption of carnosine in Pept2 null mice was only one-fifth that in wild-type animals (0.20 vs. 0.94). PEPT2 also had a substantial impact in brain where the cerebrospinal fluid (CSF)-to-plasma concentration ratio of carnosine was eightfold greater in Pept2 null mice (0.70 vs. 0.08). With respect to endogenous carnosine levels, significant reductions were observed in Pept2 null compared with wild-type mice for choroid plexus (0.026 vs. 0.20 mmol/kg), olfactory bulb (1.12 vs. 1.79 mmol/kg), and spleen (0.019 vs. 0.029 mmol/kg). In contrast, carnosine levels in the skeletal muscle of Pept2 null mice were significantly increased (1.70 vs. 1.14 mmol/kg), and no differences were observed between genotypes for endogenous carnosine levels in plasma and CSF. These results demonstrate that PEPT2 significantly modulates the disposition of exogenous carnosine. However, endogenous carnosine levels may be under homeostatic control to maintain systemic and central concentrations under physiological in vivo conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3