Affiliation:
1. Department of Biomedical Engineering, Johns Hopkins University Schoolof Medicine, Baltimore, Maryland 21205.
Abstract
Spinal transection approximately doubles renal sympathetic activity (RSA) in rats. These experiments localized spinal pathways inhibiting RSA and determined the effects of transection-elicited renal sympathetic hyperactivity on renal circulation and renal function. Experiments were conducted in chloralose-anesthetized, paralyzed, artificially respired, male Sprague-Dawley rats. RSA was measured from an electrode on the left renal nerve. Renal arterial blood flow (RABF), glomerular filtration rate, urine flow rate, and renal sodium and potassium excretions were also measured. Localized lesions of the cervical spinal cord indicated that spinal generators of RSA were inhibited by pathways descending in the dorsal cervical cord. Autoregulation of RABF prevented transection-elicited increases in RSA from affecting renal vascular resistance. Renal sodium and potassium excretions were dramatically reduced after spinal transection, although these reductions were ameliorated somewhat by fixing posttransection renal arterial pressure at pretransection levels. We conclude that the vascular effects of transection-elicited elevations in RSA are minimized by autoregulation of RABF and that posttransection changes in renal function result from changes in both arterial pressure and RSA.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献