Physiological genomic analysis of the brain renin-angiotensin system

Author:

Davisson Robin L.1

Affiliation:

1. Department of Anatomy and Cell Biology, Free Radical and Radiation Biology Program, and The Cardiovascular Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242

Abstract

The brain renin-angiotensin system (RAS) has long been considered pivotal in cardiovascular regulation and important in the pathogenesis of hypertension and heart failure. However, despite more than 30 years of study, the brain RAS continues to defy explanation. Our lack of understanding of how the brain RAS is organized at the cellular and regional levels has made it difficult to resolve long-sought questions of how ANG II is produced in the brain and the precise mechanisms by which it exerts its actions. A major reason for this is the difficulty in experimentally dissecting the brain RAS at the regional, cellular, and whole organism levels. Recently, we and others developed a series of molecular tools for selective manipulation of the murine brain RAS, in parallel with technologies for integrative analysis of cardiovascular and volume homeostasis in the conscious mouse. This review, based in part on a lecture given in conjunction with the American Physiological Society Young Investigator Award in Regulatory and Integrative Physiology (Water and Electrolyte Homeostasis Section), outlines the physiological genomics strategy that we have taken in an effort to unravel some of the complexities of this system. It also summarizes the principles, progress, and prospects for a better understanding of the brain RAS in health and disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3