Dual-color miniscope imaging of microvessels and neuronal activity in the hippocampus CA1 region of freely moving mice following alcohol administration

Author:

North Kelsey C.1ORCID,Mysiewicz Steven C.1,Bukiya Anna N.1ORCID,Dopico Alex M.1ORCID

Affiliation:

1. Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States

Abstract

Moderate-to-heavy episodic (“binge”) drinking is the most common form of alcohol consumption in the United States. Alcohol at binge drinking concentrations reduces brain artery diameter in vivo and in vitro in many species including rats, mice, and humans. Despite the critical role played by brain vessels in maintaining neuronal function, there is a shortage of methodologies to simultaneously assess neuron and blood vessel function in deep brain regions. Here, we investigate cerebrovascular responses to ethanol by choosing a deep brain region that is implicated in alcohol disruption of brain function, the hippocampal CA1, and describe the process for obtaining simultaneous imaging of pyramidal neuron activity and diameter of nearby microvessels in freely moving mice via a dual-color miniscope. Recordings of neurovascular events were performed upon intraperitoneal injection of saline versus 3 g/kg ethanol in the same mouse. In male mice, ethanol mildly increased the amplitude of calcium signals while robustly decreasing their frequency. Simultaneously, ethanol decreased microvessel diameter. In females, ethanol did not change the amplitude or frequency of calcium signals from CA1 neurons but decreased microvessel diameter. A linear regression of ethanol-induced reduction in number of active neurons and microvessel constriction revealed a positive correlation ( R = 0.981) in females. Together, these data demonstrate the feasibility of simultaneously evaluating neuronal and vascular components of alcohol actions in a deep brain area in freely moving mice, as well as the sexual dimorphism of hippocampal neurovascular responses to alcohol.

Funder

HHS | NIH | National Institute on Alcohol Abuse and Alcoholism

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3