Electrical pulse stimulation-induced muscle contraction alters the microRNA and mRNA profiles of circulating extracellular vesicles in mice

Author:

Kawanishi Noriaki12ORCID,Tominaga Takaki34ORCID,Suzuki Katsuhiko5ORCID

Affiliation:

1. Faculty of Advanced Engineering, Chiba Institute of Technology, Narashino, Japan

2. Research Organization for Nano & Life Innovation, Waseda University, Tokorozawa, Japan

3. Graduate School of Sport Sciences, Waseda University, Tokorozawa, Japan

4. Japan Society for the Promotion of Sciences, Chiyoda, Japan

5. Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan

Abstract

Extracellular vesicles, such as exosomes, are secreted by skeletal muscle tissues and may play a role in physiological adaptations induced by exercise. Endurance exercise changes the microRNA (miRNA) profile of circulating extracellular vesicles; however, the effects of resistance exercise are unknown. In this study, we examined the effect of resistance exercise as electrical pulse stimulation (EPS)-induced muscle contraction on the miRNA and mRNA profiles of circulating extracellular vesicles in mice using a comprehensive RNA sequencing-based approach. EPS-induced muscle contraction resulted in changes in the miRNA profile of circulating extracellular vesicles. In particular, 90 min after EPS-induced muscle contraction, a considerable increase in expression of muscle-specific microRNAs, such as miR-1, miR-133, and miR-206, was observed. Furthermore, we found that the expression of 208 mRNAs was considerably altered immediately after EPS-induced muscle contraction and that of 267 mRNAs changed considerably after 90 min. Gene ontology enrichment analysis showed that mRNA expression changes in circulating extracellular vesicles after EPS-induced muscle contraction promoted angiogenesis and regulated the immune response. Changes in the properties of circulating extracellular vesicles owing to muscle contraction may play an important role in resistance exercise-induced physiological adaptations.

Funder

MEXT | Japan Society for the Promotion of Science

Uehara Memorial Foundation

Sasakawa Scientific Research Grant

Meiji Yasuda Life Foundation of Health and Welfare

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3