Effects of hypercapnia and hypocapnia on ventilatory variability and the chaotic dynamics of ventilatory flow in humans

Author:

Fiamma Marie-Noëlle,Straus Christian,Thibault Sylvain,Wysocki Marc,Baconnier Pierre,Similowski Thomas

Abstract

In humans, lung ventilation exhibits breath-to-breath variability and dynamics that are nonlinear, complex, sensitive to initial conditions, unpredictable in the long-term, and chaotic. Hypercapnia, as produced by the inhalation of a CO2-enriched gas mixture, stimulates ventilation. Hypocapnia, as produced by mechanical hyperventilation, depresses ventilation in animals and in humans during sleep, but it does not induce apnea in awake humans. This emphasizes the suprapontine influences on ventilatory control. How cortical and subcortical commands interfere thus depend on the prevailing CO2 levels. However, CO2 also influences the variability and complexity of ventilation. This study was designed to describe how this occurs and to test the hypothesis that CO2 chemoreceptors are important determinants of ventilatory dynamics. Spontaneous ventilatory flow was recorded in eight healthy subjects. Breath-by-breath variability was studied through the coefficient of variation of several ventilatory variables. Chaos was assessed with the noise titration method (noise limit) and characterized with numerical indexes [largest Lyapunov exponent (LLE), sensitivity to initial conditions; Kolmogorov-Sinai entropy (KSE), unpredictability; and correlation dimension (CD), irregularity]. In all subjects, under all conditions, a positive noise limit confirmed chaos. Hypercapnia reduced breathing variability, increased LLE ( P = 0.0338 vs. normocapnia; P = 0.0018 vs. hypocapnia), increased KSE, and slightly reduced CD. Hypocapnia increased variability, decreased LLE and KSE, and reduced CD. These results suggest that chemoreceptors exert a strong influence on ventilatory variability and complexity. However, complexity persists in the quasi-absence of automatic drive. Ventilatory variability and complexity could be determined by the interaction between the respiratory central pattern generator and suprapontine structures.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3