Author:
Romero-Aleshire Melissa J.,Diamond-Stanic Maggie K.,Hasty Alyssa H.,Hoyer Patricia B.,Brooks Heddwen L.
Abstract
Factors comprising the metabolic syndrome occur with increased incidence in postmenopausal women. To investigate the effects of ovarian failure on the progression of the metabolic syndrome, female B6C3F1 mice were treated with 4-vinylcyclohexene diepoxide (VCD) and fed a high-fat (HF) diet for 16 wk. VCD destroys preantral follicles, causing early ovarian failure and is a well-characterized model for the gradual onset of menopause. After 12 wk on a HF diet, VCD-treated mice had developed an impaired glucose tolerance, whereas cycling controls were unaffected [12 wk AUC HF mice 13,455 ± 643 vs. HF/VCD 17,378 ± 1140 mg/dl/min, P < 0.05]. After 16 wk on a HF diet, VCD-treated mice had significantly higher fasting insulin levels (HF 5.4 ± 1.3 vs. HF/VCD 10.1 ± 1.4 ng/ml, P < 0.05) and were significantly more insulin resistant (HOMA-IR) than cycling controls on a HF diet (HF 56.2 ± 16.7 vs. HF/VCD 113.1 ± 19.6 mg/dl·μU/ml, P < 0.05). All mice on a HF diet gained more weight than mice on a standard diet, and weight gain in HF/VCD mice was significantly increased compared with HF cycling controls. Interestingly, even without a HF diet, progression into VCD-induced menopause caused a significant increase in cholesterol and free fatty acids. Furthermore, in mice fed a standard diet (6% fat), insulin resistance developed 4 mo after VCD-induced ovarian failure. Insulin resistance following ovarian failure (menopause) was prevented by estrogen replacement. Studies here demonstrate that ovarian failure (menopause) accelerates progression into the metabolic syndrome and that estrogen replacement prevents the onset of insulin resistance in VCD-treated mice. Thus, the VCD model of menopause provides a physiologically relevant means of studying how sex hormones influence the progression of the metabolic syndrome.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献