Obesity-inducing amygdala lesions: examination of anterograde degeneration and retrograde transport

Author:

King Bruce M.1,Cook Jack T.1,Rossiter Kirk N.1,Rollins Bethany L.1

Affiliation:

1. Department of Psychology, University of New Orleans, New Orleans, Louisiana 70148

Abstract

Small lesions centered in the posterodorsal region of the medial amygdala resulted in excessive weight gains in female rats. Unilateral lesions were nearly as effective as bilateral lesions in the first 48 h after surgery (+21 to +32 g). Assessment of lesion damage was done by both qualitative evaluation and by a quantitative grid-point counting method. The critical sites for weight gain were the intra-amygdaloid bed nucleus of the stria terminalis and the posterodorsal medial amygdaloid nucleus. Incidental damage to the overlying globus pallidus was negatively related to weight gain. The cupric silver method for demonstrating axonal degeneration was applied to brains with obesity-inducing lesions. A dense pattern of degenerating terminals was found in the lateral septum, amygdala, ventral striatum, and ventromedial hypothalamus. Degeneration in the paraventricular nucleus of the hypothalamus was scarce or absent. Small retrograde tracer injections made in either the intra-amygdaloid bed nucleus of the stria terminalis or in the posterodorsal medial amygdaloid nucleus labeled cells in the amygdala, lateral septum, and hypothalamus, reciprocating the anterograde projections from the amygdala to these areas. The data suggest that subdivisions of the posterodorsal amygdala participate in the regulation of feeding in a manner that is similar to the better-known role of this part of the brain in mediating reproductive behavior. Although topographical differences may exist within the amygdaloid and hypothalamic subdivisions regulating these two sexually dimorphic behaviors, the relays engaged by feeding-related connections and those related to reproduction are remarkably parallel.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3