Mild chronic hypoxemia modifies expression of brain stem angiotensin peptide receptors and reflex responses in fetal sheep

Author:

Pulgar Victor M.,Hong Jason Kyung-soo,Jessup Jewell A.,Massmann Angela G.,Diz Debra I.,Figueroa Jorge P.

Abstract

The effects of chronic mild hypoxemia on the binding of angiotensin receptors in selected brain stem nuclei and reflex responses were studied in fetal sheep. Fetal and maternal catheters were placed at 120 days' gestation, and animals received intratracheal maternal administration of nitrogen ( n = 16) or compressed air in controls ( n = 19). Nitrogen infusion was adjusted to reduce fetal brachial artery Po2 by 25% during 5 days. Spontaneous baroreflex sensitivity and spectral analysis of the pulse interval were analyzed during the 5 days hypoxemia period using 90 min of daily recording. Brains of control and hypoxemic animals were collected, and brain stem angiotensin receptor binding was studied by in vitro autoradiography at 130 days of gestation. After 5 days of hypoxemia, some animals in each group were submitted to one complete umbilical cord occlusion during 5 min. [125I]sarthran binding showed that chronic mild hypoxemia significantly increases angiotensin type 1 receptor, angiotensin type 2 receptor, and ANG-(1-7) angiotensin receptor binding sites in the nucleus tractus solitarius and dorsal motor nucleus of the vagus ( P < 0.05). Hypoxemia induced lower baroreflex sensitivity and a higher low frequency-to-high frequency ratio in the fetus, consistent with a shift from vagal to sympathetic autonomic cardiac regulation. Cord occlusion to elicit a chemoreflex response induced a greater bradycardic response in hypoxemic fetuses (slope of the initial fall in heart rate; 11.3 ± 1.9 vs. 6.4 ± 1.2 beats·min−1·s−1, P < 0.05). In summary, chronic mild hypoxemia increased binding of angiotensin receptors in brain stem nuclei, decreased spontaneous baroreflex gain, and increased chemoreflex responses to asphyxia in the fetus. These results suggest hypoxemia-induced alterations in brain stem mechanisms for cardiovascular control.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3