Magnesium sulfate and sex differences in cardiovascular and neural adaptations during normoxia and asphyxia in preterm fetal sheep

Author:

Galinsky Robert12,Dhillon Simerdeep K.1,Lear Christopher A.1,Yamaguchi Kyohei1,Wassink Guido1,Gunn Alistair J.1ORCID,Bennet Laura1

Affiliation:

1. Department of Physiology, University of Auckland, Auckland, New Zealand

2. The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia

Abstract

Magnesium sulfate (MgSO4) is recommended for preterm neuroprotection, preeclampsia, and preterm labor prophylaxis. There is an important, unmet need to carefully test clinical interventions in both sexes. Therefore, we aimed to investigate cardiovascular and neurophysiological adaptations to MgSO4 during normoxia and asphyxia in preterm male and female fetal sheep. Fetuses were instrumented at 98 ± 1 days of gestation (term = 147 days). At 104 days, unanesthetized fetuses were randomly assigned to intravenous MgSO4 ( n = 12 female, 10 male) or saline ( n = 13 female, 10 male). At 105 days fetuses underwent umbilical cord occlusion for up to 25 min. Occlusions were stopped early if mean arterial blood pressure (MAP) fell below 8 mmHg or asystole occurred for >20 s. During normoxia, MgSO4 was associated with similar reductions in fetal heart rate (FHR), EEG power, and movement in both sexes ( P < 0.05 vs. saline controls) and suppression of α- and β-spectral band power in males ( P < 0.05 vs. saline controls). During occlusion, similar FHR and MAP responses occurred in MgSO4-treated males and females compared with saline controls. Recovery of FHR and MAP after release of occlusion was more prolonged in MgSO4-treated males ( P < 0.05 vs. saline controls). During and after occlusion, EEG power was lower in MgSO4-treated females ( P < 0.05 vs. saline controls). In conclusion, MgSO4 infusion was associated with subtle sex-specific effects on EEG spectral power and cardiac responses to asphyxia in utero, possibly reflecting sex-specific differences in interneuronal connectivity and regulation of cardiac output.

Funder

Manatu Hauora | Health Research Council of New Zealand (HRC)

Auckland Medical Research Foundation (AMRF)

Lottery board of New Zealand

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3