Sex differences result in increased morbidity from hyponatremia in female rats

Author:

Fraser C. L.1,Kucharczyk J.1,Arieff A. I.1,Rollin C.1,Sarnacki P.1,Norman D.1

Affiliation:

1. Department of Medicine, Veterans Administration Medical Center, SanFrancisco 94121.

Abstract

The development of symptomatic hyponatremia in otherwise healthy young women can result in death or permanent brain damage. The reasons for the increased female susceptibility to complications from hyponatremia are, however, unclear. To determine whether mechanisms that normally defend the brain against damage from hyponatremia are less effective in females than males, we studied both sodium transport in the brains of hyponatremic male and female rats and the effects of parenteral arginine vasopressin on brain high-energy phosphate metabolism and intracellular pH. Basal sodium uptake in synaptosomes prepared from whole brain of females (2.20 nmol/mg protein) and males (2.98 nmol/mg protein) was not statistically different. In contrast, veratridine-stimulated sodium uptake in female brain was 8.20 nmol/mg protein, which was 86% greater (P less than 0.001) than the 6.12 nmol/mg protein observed for male brain. Additionally, sodium uptake between 5 and 60 s was significantly (P less than 0.001) greater in females than males. These data suggest that the Na+-K+-adenosinetriphosphatase (ATPase) pump function in female rat brain synaptosomes is less effective than in males. To determine whether arginine vasopressin, a peptide hormone that promotes water retention by the kidney, had any effects on cerebral energy metabolism, we performed phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) studies on the brain of normonatremic young adult male and female rats subjected to high (20 IU) peripheral doses of arginine vasopressin.We found decreased high-energy phosphate generation, elevated inorganic phosphate, and intracellular acidosis after arginine vasopressin administration in females but not males.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3