Viscerosensory input drives angiotensin II type 1A receptor-expressing neurons in the solitary tract nucleus

Author:

Carter D. A.1ORCID,Guo H.2,Connelly A. A.1,Bassi J. K.1,Fong A. Y.1,Allen A. M.12ORCID,McDougall S. J.2ORCID

Affiliation:

1. Department of Physiology, The University of Melbourne, Victoria, Australia

2. Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia

Abstract

Homeostatic regulation of visceral organ function requires integrated processing of neural and neurohormonal sensory signals. The nucleus of the solitary tract (NTS) is the primary sensory nucleus for cranial visceral sensory afferents. Angiotensin II (ANG II) is known to modulate peripheral visceral reflexes, in part, by activating ANG II type 1A receptors (AT1AR) in the NTS. AT1AR-expressing NTS neurons occur throughout the NTS with a defined subnuclear distribution, and most of these neurons are depolarized by ANG II. In this study we determined whether AT1AR-expressing NTS neurons receive direct visceral sensory input, and whether this input is modulated by ANG II. Using AT1AR-GFP mice to make targeted whole cell recordings from AT1AR-expressing NTS neurons, we demonstrate that two-thirds (37 of 56) of AT1AR-expressing neurons receive direct excitatory, visceral sensory input. In half of the neurons tested (4 of 8) the excitatory visceral sensory input was significantly reduced by application of the transient receptor potential vallinoid type 1 receptor agonist, capsaicin, indicating AT1AR-expressing neurons can receive either C- or A-fiber-mediated input. Application of ANG II to a subset of second-order AT1AR-expressing neurons did not affect spontaneous, evoked, or asynchronous glutamate release from visceral sensory afferents. Thus it is unlikely that AT1AR-expressing viscerosensory neurons terminate on AT1AR-expressing NTS neurons. Our data suggest that ANG II is likely to modulate multiple visceral sensory modalities by altering the excitability of second-order AT1AR-expressing NTS neurons.

Funder

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

Australian Heart Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CCK-sensitive C fibers activate NTS leptin receptor-expressing neurons via NMDA receptors;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2023-12-18

2. Identification of Leptin Receptor–Expressing Cells in the Nodose Ganglion of Male Mice;Endocrinology;2019-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3