Differential chemoreceptor reflex responses of adrenal preganglionic neurons

Author:

Cao Wei-Hua1,Morrison Shaun F.1

Affiliation:

1. Department of Physiology, Northwestern University Medical School, Chicago, Illinois 60611

Abstract

Adrenal sympathetic preganglionic neurons (ADR SPNs) regulating the chromaffin cell release of epinephrine (Epi ADR SPNs) and those controlling norepinephrine (NE ADR SPNs) secretion have been distinguished on the basis of their responses to stimulation in the rostral ventrolateral medulla, to glucopenia produced by 2-deoxyglucose, and to activation of the baroreceptor reflex. In this study, we examined the effects of arterial chemoreceptor reflex activation, produced by inhalation of 100% N2 or intravenous injection of sodium cyanide, on these two groups of ADR SPNs, identified antidromically in urethane-anesthetized, artificially ventilated rats. The mean spontaneous discharge rates of 38 NE ADR SPNs and 51 Epi ADR SPNs were 4.4 ± 0.4 and 5.6 ± 0.4 spikes/s at mean arterial pressures of 98 ± 3 and 97 ± 3 mmHg, respectively. Ventilation with 100% N2 for 10 s markedly excited all NE ADR SPNs (+222 ± 23% control, n = 36). In contrast, the majority (40/48; 83%) of Epi ADR SPNs were unaffected or slightly inhibited by ventilation with 100% N2 (population response: +6 ± 10% control, n = 48). Similar results were obtained after injection of sodium cyanide. These observations suggest that the network controlling the spontaneous discharge of NE ADR SPNs is more sensitive to brief arterial chemoreceptor reflex activation than is that regulating the activity of Epi ADR SPNs. The differential responsiveness to activation of the arterial chemoreceptor reflex of the populations of ADR SPNs regulating epinephrine and norepinephrine secretion suggests that their primary excitatory inputs arise from separate populations of sympathetic premotor neurons and that a fall in arterial oxygen tension is not a major stimulus for reflex-mediated adrenal epinephrine secretion.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3