Factors that increase the contractile tone of the ductus arteriosus also regulate its anatomic remodeling

Author:

Kajino Hiroki1,Chen Yao-Qi1,Seidner Steven R.2,Waleh Nahid13,Mauray Françoise1,Roman Christine1,Chemtob Sylvain4,Koch Cameron J.5,Clyman Ronald I.16

Affiliation:

1. Cardiovascular Research Institute and

2. Department of Pediatrics, University of Texas Health Science Center, San Antonio, Texas 78284;

3. SRI International, Menlo Park, California 94025;

4. Research Center, Hôpital Saint-Justine, Montreal, Quebec H3T 1C5, Canada; and

5. Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

6. Department of Pediatrics, University of California, San Francisco 94143-0544;

Abstract

Permanent closure of the full-term newborn ductus arteriosus (DA) occurs only if profound hypoxia develops within the vessel wall during luminal obliteration. We used fetal and newborn baboons and lambs to determine why the immature DA fails to remodel after birth. When preterm newborns were kept in a normoxic range (PaO2 : 50–90 mmHg), 86% still had a small patent DA on the sixth day after birth; in addition, the preterm DA wall was only mildly hypoxic and had only minimal remodeling. The postnatal increase in PaO2 normally induces isometric contractile responses in rings of DA; however, the excessive inhibitory effects of endogenous prostaglandins and nitric oxide, coupled with a weaker intrinsic DA tone, make the preterm DA appear to have a smaller increment in tension in response to oxygen than the DA near term. We found that oxygen concentrations, beyond the normoxic range, produce an additional increase in tension in the preterm DA that is similar to the contractile response normally seen at term. We predicted that preterm newborns, kept at a higher PaO2 , would have increased DA tone and would be more likely to obliterate their lumen. We found that preterm newborns, maintained at a PaO2 >200 mmHg, had only a 14% incidence of patent DA. Even though DA constriction was due to elevated PaO2 , obliteration of the lumen produced profound hypoxia of the DA wall and the same features of remodeling that were observed at term. DA wall hypoxia appears to be both necessary and sufficient to produce anatomic remodeling in preterm newborns.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3