AT1-receptor blockade in the hypothalamic PVN reduces central hyperosmolality-induced renal sympathoexcitation

Author:

Chen Qing Hui1,Toney Glenn M.1

Affiliation:

1. Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900

Abstract

Autonomic neurons in the hypothalamic paraventricular nucleus (PVN) are innervated by osmotic-sensitive regions of the lamina terminalis, receive input from ANG II-containing cells, and express AT1 ANG II receptors. Therefore, we hypothesized that ANG II actions within the PVN could underlie hyperosmolality-induced increases in renal sympathetic nerve activity (RSNA). In anesthetized baroreceptor-denervated rats, graded concentrations of NaCl (0.30, 0.9, 1.5, and 2.1 osmol/l) were injected (300 μl) centrally via the internal carotid artery (ICA) and produced corresponding increases in mean arterial pressure (MAP) and RSNA. In addition, equivalent hyperosmotic loads (1.5 osmol/l) of NaCl, glucose, and mannitol each significantly ( P < 0.05) increased MAP and RSNA. The same stimuli had no effect when administered intravenously. Bilateral PVN microinjections (100 nl) of the AT1-receptor antagonist losartan (80 nmol) before osmotic challenge had no effect on resting RSNA but significantly ( P < 0.05) reduced RSNA responses to hyperosmotic NaCl ( n = 7), glucose ( n = 6), and mannitol ( n = 6). Increases in RSNA evoked by hyperosmotic NaCl were significantly ( P < 0.05) attenuated ∼20 min after losartan injection and recovered within 60–120 min. In contrast, losartan outside the PVN as well as vehicle (saline) within the PVN failed to alter RSNA responses to ICA hyperosmotic NaCl. Results suggest that elevated RSNA after central sodium/osmotic activation is mediated, at least in part, by a synaptic mechanism involving AT1-receptor activation within the PVN.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3