Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K+channels

Author:

Faraci Frank M.1,Sobey Christopher G.2,Chrissobolis Sophocles2,Lund Donald D.1,Heistad Donald D.1,Weintraub Neal L.1

Affiliation:

1. Departments of Internal Medicine and Pharmacology, Cardiovascular Center, University of Iowa College of Medicine, Iowa City, Iowa 52242; and

2. Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia

Abstract

Dilatation of cerebral arterioles in response to arachidonic acid is dependent on activity of cyclooxygenase. In this study, we examined mechanisms that mediate dilatation of the basilar artery in response to arachidonate. Diameter of the basilar artery (baseline diameter = 216 ± 7 μm) (means ± SE) was measured using a cranial window in anesthetized rats. Arachidonic acid (10 and 100 μM) produced concentration-dependent vasodilatation that was not inhibited by indomethacin (10 mg/kg iv) or N G-nitro-l-arginine (100 μM) but was inhibited markedly by baicalein (10 μM) or nordihydroguaiaretic acid (NDGA; 10 μM), inhibitors of the lipoxygenase pathway. Dilatation of the basilar artery was also inhibited markedly by tetraethylammonium ion (TEA; 1 mM) or iberiotoxin (50 nM), inhibitors of calcium-dependent potassium channels. For example, 10 μM arachidonate dilated the basilar artery by 19 ± 7 and 1 ± 1% in the absence and presence of iberiotoxin, respectively. Measurements of membrane potential indicated that arachidonate produced hyperpolarization of the basilar artery that was blocked completely by TEA. Incubation with [3H]arachidonic acid followed by reverse-phase and chiral HPLC indicated that the basilar artery produces relatively small quantities of prostanoids but large quantities of 12(S)-hydroxyeicosatetraenoic acid (12-S-HETE), a lipoxygenase product. Moreover, the production of 12-HETE was inhibited by baicalein or NDGA. These findings suggest that dilatation of the basilar artery in response to arachidonate is mediated by a product(s) of the lipoxygenase pathway, with activation of calcium-dependent potassium channels and hyperpolarization of vascular muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3