Author:
Akabane Gen,Ogushi Yuji,Hasegawa Takahiro,Suzuki Masakazu,Tanaka Shigeyasu
Abstract
An aquaporin (Hyla AQP-h3BL), consisting of 292 amino acid residues, has been cloned from the urinary bladder of Hyla japonica. In a swelling assay using Xenopus oocytes, AQP-h3BL cRNA-injected oocytes developed a sevenfold and 2.8-fold higher permeability to water and glycerol, respectively, than the water-injected oocytes. This permeability was inhibited by HgCl2. Immunofluorescence revealed that AQP-h3BL is localized in the basolateral plasma membrane of both granular cells in the ventral pelvic and dorsal skins and the secretory cells in the mucous glands. Immunopositive cells were also observed in the basolateral membrane of principal cells in the collecting ducts and in a portion of the late distal tubules in the kidneys, as well as in the principal cells of the urinary bladder. Sequence homology suggests that AQP-h3BL is a homolog to mammalian AQP3. This conclusion is supported by the observed localization of AQP-h3BL to the basolateral membrane in water- and glycerol-permeable epithelial cells. In ventral pelvic skins and urinary bladders, water enters into the cytoplasm through the apical plasma membrane at sites where AQP-h2, sometimes in association with AQP-h3, responds to stimulation by vasotocin; the water exits throughout AQP-h3BL to extracellular spaces. In the mucous glands, on the other hand, water enters throughout this AQP-h3BL and exits through AQP-x5, which is in the apical membrane of secretory cells. Thus, water homeostasis in the frog body is regulated by AQP-h3BL expressed in the basolateral membrane in concert with arginine vasotocin (AVT)-dependent or AVT-independent AQP.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献