Exogenous ketone ester delays CNS oxygen toxicity without impairing cognitive and motor performance in male Sprague-Dawley rats

Author:

Stavitzski Nicole M.1,Landon Carol S.1,Hinojo Christopher M.1,Poff Angela M.1,Rogers Christopher Q.1,D’Agostino Dominic P.12,Dean Jay B.1ORCID

Affiliation:

1. Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida

2. Institute of Human Machine and Cognition, Ocala, Florida

Abstract

Hyperbaric oxygen (HBO2) is breathing >1 atmosphere absolute (ATA; 101.3 kPa) O2 and is used in HBO2 therapy and undersea medicine. What limits the use of HBO2 is the risk of developing central nervous system (CNS) oxygen toxicity (CNS-OT). A promising therapy for delaying CNS-OT is ketone metabolic therapy either through diet or exogenous ketone ester (KE) supplement. Previous studies indicate that KE induces ketosis and delays the onset of CNS-OT; however, the effects of exogeneous KE on cognition and performance are understudied. Accordingly, we tested the hypothesis that oral gavage with 7.5 g/kg induces ketosis and increases the latency time to seizure (LSz) without impairing cognition and performance. A single oral dose of 7.5 g/kg KE increases systemic β-hydroxybutyrate (BHB) levels within 0.5 h and remains elevated for 4 h. Male rats were separated into three groups: control (no gavage), water-gavage, or KE-gavage, and were subjected to behavioral testing while breathing 1 ATA (101.3 kPa) of air. Testing included the following: DigiGait (DG), light/dark (LD), open field (OF), and novel object recognition (NOR). There were no adverse effects of KE on gait or motor performance (DG), cognition (NOR), and anxiety (LD, OF). In fact, KE had an anxiolytic effect (OF, LD). The LSz during exposure to 5 ATA (506.6 kPa) O2 (≤90 min) increased 307% in KE-treated rats compared with control rats. In addition, KE prevented seizures in some animals. We conclude that 7.5 g/kg is an optimal dose of KE in the male Sprague-Dawley rat model of CNS-OT.

Funder

DOD | US Navy | Office of Naval Research

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3