Pituitary adenylate cyclase-activating polypeptide drives cardiorespiratory responses to heat stress in neonatal mice

Author:

Barrett Karlene T.1,Daubenspeck John A.2,Wilson Richard J. A.1

Affiliation:

1. Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; and

2. Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire

Abstract

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has emerged as a principal and rate-limiting regulator of physiological stress responses in adult rodents and has been implicated in sudden infant death syndrome (SIDS). Recent studies show that PACAP plays a role in neonatal cardiorespiratory responses to hypoxia, hypercapnia, and hypothermia, but not hyperthermia, which is often associated with SIDS. Here we tested the hypothesis that, consistent with a role in SIDS, PACAP is involved in regulating the neonatal cardiorespiratory responses to severe heat. To address this, we used head-out plethysmography and surface ECG electrodes to study the cardiorespiratory physiology of conscious neonatal PACAP-null and wild-type mice at ambient temperatures of 32°C (baseline) and 40°C (heat stress). We also assessed body surface temperature as an indicator of cutaneous heat loss. Our results show that wild-type neonatal mice respond to heat stress by increasing ventilation ( P = 0.007) and associated expired CO2 ( P = 0.041), heart rate ( P < 0.001), and cutaneous heat loss ( P < 0.001). In PACAP-null neonates, this heat response is impaired, as indicated by a decrease in ventilation ( P = 0.04) and associated expired CO2 ( P = 0.006) and a blunted increase in heart rate ( P = 0.001) and cutaneous heat loss ( P = 0.0002). In addition, heart rate variability at baseline was lower in PACAP-null neonates than wild-type controls ( P < 0.01). These results suggest that, during heat stress, PACAP is important for neonatal cardiorespiratory responses that help regulate body temperature. Abnormal PACAP regulation could, therefore, contribute to neonatal disorders in which the autonomic response to stress is impaired, such as SIDS.

Funder

SIDS Calgary Society

Canadian Institutes of Health Research (CIHR)

Alberta Innovates - Health Solutions (AIHS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3