Affiliation:
1. Department of Pharmacology/Physiology, University of Pittsburgh, Pennsylvania 15261.
Abstract
The differential effects of insulin-induced hypoglycemia and cold exposure on adrenal medullary epinephrine (Epi) and norepinephrine (NE) cells were investigated in male Sprague-Dawley rats. In rats fasted overnight, insulin produced a marked hypoglycemia that resulted in a 70% decrease in adrenal medullary Epi content 3 h after the insulin was administered. No change in NE content was observed. Plasma Epi concentration was increased markedly after insulin, with a smaller increment in NE. In contrast, exposure to a 4 degrees C environment selectively reduced adrenal NE content, with the effect reaching statistical significance at 18 h. Cold exposure also led to a significant rise in plasma NE but not Epi. Both insulin-induced hypoglycemia and cold exposure significantly elevated adrenal dopamine, indicating that catecholamine synthesis was stimulated. Further evidence of enhanced catecholamine formation was the observation that inhibition of synthesis with alpha-methyl-p-tyrosine (AMT) greatly augmented the ability of insulin-induced hypoglycemia to selectively reduce adrenal medullary Epi content. Similarly, in cold-exposed animals, AMT pretreatment accelerated the NE depletion so that a significant decline was observed at 3 h. These results support the conclusion that the two major populations of adrenal catecholamine-secreting cells may be preferentially stimulated by different stressors. Moreover, augmented synthetic activity functions to maintain catecholamine stores in both Epi- and NE-secreting cells.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献