Cerebral anoxia tolerance in turtles: regulation of intracellular calcium and pH

Author:

Bickler P. E.1

Affiliation:

1. Department of Anesthesia, University of California, San Francisco94143-0542.

Abstract

To investigate mechanisms of cerebral anoxia tolerance, cerebrocortical intracellular calcium ([Ca2+]i) and pH (pHi) regulation were compared in turtles (Trachemys scripta) and laboratory rats. [Ca2+]i and pHi in living 200 to 300-microns-thick cortical brain slices were measured with the fluorescent indicators fura-2/acetoxymethyl ester (AM) and 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein during exposure to anoxia. Within 5 min, [Ca2+]i increased to > 1,000 nM in rat brain slices exposed to anoxia but [Ca2+]i was normal even after 5 h of anoxia in turtles. ATP levels remained normal in anoxic turtle brain but fell rapidly in rats. During anoxia, pHi fell by 0.25 +/- 0.08 pH units in rats but only 0.10 +/- 0.04 in turtles (P < 0.05). Inhibition of glycolysis in anoxic turtle brain with iodoacetate resulted in large increases in [Ca2+]i but prior exposure of slices to anoxia resulted in greatly attenuated calcium entry. The reduction in calcium flux was greater with increasing exposure to anoxia, suggesting progressive arrest of calcium channel activity. Tolerance of cerebral anoxia in turtles may be related to anaerobic ATP production, arrest of calcium channels, and attenuation of changes in pHi.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3