Inflammatory ascites formation induced by macromolecules in mice and rats

Author:

Baintner Károly

Abstract

Different macromolecules were administered intraperitoneally to stimulate formation of protein-rich ascitic fluid in rodents. Stimulatory effect of plant lectins depended on the attachment to cell surface carbohydrates, Canavalia ensiformis (ConA) lectin was used in the majority of experiments. The time course of ConA-induced ascites was divided into an early (up to 4 h) and a late (from 6 h on) phase, with a transitional period between the two. Water and protein accumulation showed parallel time courses: volume of the ascitic fluid peaked at around 3 h, and fibrin threads appeared after 6 h. Viscosity of the ascitic fluid and its supernatant increased with time, reaching maximal fibrinogen concentration at around 16 h. Peritoneal permeability, followed by pleural and pericardial effusions, was elicited only by lectins that form soluble complexes with serum glycoproteins, whereas the effect of serum-precipitating lectins was restricted to the peritoneum. Macromolecules with serial positive charges (e.g., polylysine or polyethyleneimine) enhanced peritoneal permeability by ionic interactions with cell surface molecules. Viscosity of the polycation-induced ascitic fluid did not tend to increase with time and corresponded to the early phase of the ConA-induced ascites. Polyglutamate, a polyanionic macromolecule, inhibited the effect of polycations, but not that of ConA. The most efficient stimulatory macromolecules appear to induce ascites by noncovalent cross-linking of cell surface glycoproteins or glycosaminoglycans or both. A similar mechanism may operate in the maintenance of basal secretion to prevent eventual desiccation. Noncovalent cross-linking appears to be a common denominator of both basal and enhanced permeability.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3