L-type calcium channels and MAP kinase contribute to thyrotropin-releasing hormone-induced depolarization in thalamic paraventricular nucleus neurons

Author:

Kolaj Miloslav1,Zhang Li1,Renaud Leo P.1

Affiliation:

1. Ottawa Hospital Research Institute, Neuroscience Program and University of Ottawa, Department of Medicine, Ottawa, Ontario, Canada

Abstract

In rat paraventricular thalamic nucleus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances neuronal excitability via concurrent decrease in a G protein-coupled inwardly rectifying K (GIRK)-like conductance and opening of a cannabinoid receptor-sensitive transient receptor potential canonical (TRPC)-like conductance. Here, we investigated the calcium (Ca2+) contribution to the components of this TRH-induced response. TRH-induced membrane depolarization was reduced in the presence of intracellular BAPTA, also in media containing nominally zero [Ca2+]o, suggesting a critical role for both intracellular Ca2+ release and Ca2+ influx. TRH-induced inward current was unchanged by T-type Ca2+ channel blockade, but was decreased by blockade of high-voltage-activated Ca2+ channels (HVACCs). Both the pharmacologically isolated GIRK-like and the TRPC-like components of the TRH-induced response were decreased by nifedipine and increased by BayK8644, implying Ca2+ influx via L-type Ca2+ channels. Only the TRPC-like conductance was reduced by either thapsigargin or dantrolene, suggesting a role for ryanodine receptors and Ca2+-induced Ca2+ release in this component of the TRH-induced response. In pituitary and other cell lines, TRH stimulates MAPK. In PVT neurons, only the GIRK-like component of the TRH-induced current was selectively decreased in the presence of PD98059, a MAPK inhibitor. Collectively, the data imply that TRH-induced depolarization and inward current in PVT neurons involve both a dependency on extracellular Ca2+ influx via opening of L-type Ca2+ channels, a sensitivity of a TRPC-like component to intracellular Ca2+ release via ryanodine channels, and a modulation by MAPK of a GIRK-like conductance component.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3