Nerve transfer for restoration of lower motor neuron-lesioned bladder function. Part 1: attenuation of purinergic bladder smooth muscle contractions

Author:

Frara Nagat1,Giaddui Dania1,Braverman Alan S.1,Porreca Danielle S.1,Brown Justin M.2,Mazzei Michael3,Wagner Ida J.3,Pontari Michel A.4,Tiwari Ekta5,Testa Courtney L.1,Yu Daohai6,Hobson Lucas J.1,Barbe Mary F.1ORCID,Ruggieri Michael R.15ORCID

Affiliation:

1. Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania

2. Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts

3. Department of Surgery, Lewis Katz School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania

4. Department of Urology, Lewis Katz School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania

5. Department of Electrical and Computer Engineering, College of Engineering, Temple University, Philadelphia, Pennsylvania

6. Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania

Abstract

This study determined the effect of pelvic organ decentralization and reinnervation 1 yr later on the contribution of muscarinic and purinergic receptors to ex vivo, nerve-evoked, bladder smooth muscle contractions. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. After exclusions, 8 were reinnervated 12 mo postdecentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers then euthanized 8-12 mo later. Four served as long-term decentralized only animals. Controls included six sham-operated and three unoperated animals. Detrusor muscle was assessed for contractile responses to potassium chloride (KCl) and electric field stimulation (EFS) before and after purinergic receptor desensitization with α, β-methylene adenosine triphosphate (α,β-mATP), muscarinic receptor antagonism with atropine, or sodium channel blockade with tetrodotoxin. Atropine inhibition of EFS-induced contractions increased in decentralized and reinnervated animals compared with controls. Maximal contractile responses to α,β-mATP did not differ between groups. In strips from decentralized and reinnervated animals, the contractile response to EFS was enhanced at lower frequencies compared with normal controls. The observation of increased blockade of nerve-evoked contractions by muscarinic antagonist with no change in responsiveness to purinergic agonist suggests either decreased ATP release or increased ecto-ATPase activity in detrusor muscle as a consequence of the long-term decentralization. The reduction in the frequency required to produce maximum contraction following decentralization may be due to enhanced nerve sensitivity to EFS or a change in the effectiveness of the neurotransmission.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3