Plasma catecholamine and corticosterone and their in vitro effects on lizard skeletal muscle lactate metabolism

Author:

Gleeson T. T.1,Dalessio P. M.1,Carr J. A.1,Wickler S. J.1,Mazzeo R. S.1

Affiliation:

1. Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder 80309-0334.

Abstract

Lizard skeletal muscles utilize primarily lactate as a gluconeogenic substrate for glycogen replenishment following exercise. To understand the influence of selected hormones on this process, we measured changes in plasma catecholamines and corticosterone resulting from exercise in the lizard Dipsosaurus dorsalis and then investigated the physiological effects of those hormones on skeletal muscle lactate and glucose metabolism in vitro. Plasma epinephrine (Epi), norepinephrine, and corticosterone (Cort) increased 5.8, 10.2, and 2.2 times, respectively, after 5 min of exhaustive exercise. Epi and Cort levels remained elevated after 2 h of recovery. Skeletal muscle fiber bundles isolated from the red and white regions of the iliofibularis muscle were incubated 2 h at 40 degrees C in the presence of postexercise concentrations of [14C]lactate (15 mM) and glucose (8.5 mM) in the presence and absence of Epi or Cort. Red muscle oxidized both substrates at 2-3 times the rate of white muscle, and both red and white fibers oxidized lactate at 5-10 times the rate of glucose oxidation. Epi had a stimulatory effect on lactate oxidation by white muscle. Lactate incorporation into glycogen proceeded at 2-3 times the rate of glucose incorporation in both muscle types, with rates in red muscle again 2-3 times that for white muscle. Epi stimulated lactate carbon incorporation into glycogen by 50-140% in both red and white muscle but had no effect on glucose incorporation into glycogen in either tissue. We interpret these data as evidence that epinephrine stimulates lactate removal by skeletal muscle. Cort had no effect on lactate metabolism in either muscle type.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3