Microcalorimetric measurement of reversible metabolic suppression induced by anoxia in isolated hepatocytes

Author:

Buck L. T.1,Hochachka P. W.1,Schon A.1,Gnaiger E.1

Affiliation:

1. Department of Zoology, University of British Columbia, Vancouver, Canada.

Abstract

The metabolic suppression due to anoxia in hepatocytes from the anoxia-tolerant turtle Chrysemys picta bellii was measured directly using microcalorimetric techniques. The normoxic heat flux from hepatocytes in suspension (25 degrees C) was 1.08 +/- 0.08 mW/g cells and decreased by 76% to 0.26 +/- 0.03 mW/g cells in response to anoxic incubation. After an acute decrease in temperature (to 10 degrees C) anoxic heat flux dropped by 96% relative to the normoxic control at 25 degrees C. The relative decrease in heat flux at both temperatures was similar, 76% at 25 degrees C and 68% at 10 degrees C. From the caloric equivalent of glycogen fermentation to lactate the heat flux from lactate production was calculated to be -93 microW/g cells (25 degrees C), and this accounted for 36% of the anoxic heat flux. When the enthalpy change associated with the release of free glucose (from glycogen breakdown) is considered, an additional 6% of the anoxic heat flux can be accounted for. Therefore, a portion of the anoxic heat flux is unaccounted for (58%), resulting in an “exothermic gap.” This differs from the normoxically incubated hepatocytes where the indirect calorimetric measurement of heat flux (hepatocyte O2 consumption) could fully account for the calorimetrically measured heat flux. When normoxic hepatocytes were inhibited with cyanide, a rapid suppression in heat flux was observed. Because rapid reequilibration to a lower, cyanide-induced steady state occurred in < 15 min, it is also assumed that there is no short-term Pasteur effect in this tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3