DPC blockade of transepithelial chloride absorption and single anion channels in teleost urinary bladder

Author:

Chang W.1,Loretz C. A.1

Affiliation:

1. Department of Biological Sciences, State University of New York,Buffalo 14260.

Abstract

The columnar cell epithelium of the euryhaline goby (Gillichthys mirabilis) urinary bladder actively absorbs NaCl from the lumen, thereby driving water transport and reducing water loss to the hypertonic external environment. Transcellular transport of Cl- involves apical membrane entry via Na(+)-coupled cotransport driven by the Na+ electrochemical gradient and subsequent basolateral membrane exit. An anion channel in the basolateral cell membrane of columnar epithelial cells was identified using patch-clamp technique. This channel may be one avenue for basolateral Cl- exit from the urinary bladder columnar cell. Single-channel conductance (Gc) of channels in excised, inside-out membrane patches was approximately 75 pS in symmetrical solutions containing 140 mM Cl-. The channel was selective to Cl- over other anions [Cl- > 2-(N-morpholino)ethanesulfonic acid (MES) > F- approximately Br- approximately I- > NO3- approximately SO4(2-)). Channel activity, expressed as the open probability (Po), was voltage dependent in the physiological range of membrane potential, with membrane depolarization increasing Po. Decreasing the pH of the solution bathing the cytoplasmic face of the membrane patch over the range 8.4-6.0 reduced Po. There was no effect of pH on either Gc or ionic selectivity. Radiochloride flux technique was also applied to intact columnar epithelial cell sheets to relate anion channel activity to macroscopic transcellular transport. Serosal exposure to the anion channel blocker diphenylamine-2-carboxylic acid (DPC, 30 microM to 3 mM) reduced and abolished transcellular radiochloride fluxes and net Cl- absorption across short-circuited tissues in a dose-dependent fashion. DPC addition (10 microM to 1 mM) to the solution bathing the cytoplasmic face of excised, inside-out membrane patches reduced Po in a dose-dependent manner and had no effect on Gc. These parallel findings of DPC blockade on intact epithelia and on single anion channels support the notion that this anion channel is a basolateral membrane component of the pathway for Cl- movement in transcellular Cl- absorption.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3