Affiliation:
1. Department of Physical Education, University of California, Berkeley94720.
Abstract
We hypothesized that augmented responses of glucoregulatory hormones in iron deficiency would enhance liver and muscle glycogenolysis, leading to increased gluconeogenic precursor (lactate) supply and upregulation of hepatic gluconeogenesis. Female weanling rats were randomly placed on either a mildly iron-deficient (-Fe; 15 mg Fe/kg diet) or an iron-sufficient (+Fe; 50 mg Fe/kg diet) diet for 4 wk and studied at rest and during exhaustive treadmill running. Hemoglobin was 9.0 +/- 0.2 and 13.1 +/- 0.3 g/dl in -Fe and +Fe, respectively, after 3.5 wk of dietary iron deficiency. Arterial plasma epinephrine (Epi), norepinephrine (NE), adrenocorticotropic hormone (ACTH), corticosterone, insulin, and glucagon levels were similar at rest in both groups, as were liver, gastrocnemius, and superficial and deep vastus medialis glycogen levels. Liver and kidney phosphoenolpyruvate carboxykinase (PEPCK) activities were similar in both groups. Maximum O2 consumption was decreased (22%) in -Fe. Respiratory exchange ratio (CO2 production/O2 consumption) was unaffected at rest but increased at maximum O2 consumption in -Fe. Time to exhaustion during a standardized running test (13.4 m/min, 0% grade) was decreased 45% in -Fe (63 +/- 5 vs. 116 +/- 10 min). During exercise, euglycemia was maintained in both groups, but blood lactate was elevated in -Fe. The mean net glycogen utilization during exercise was increased in liver (43%), soleus (33%), and superficial vastus medialis (106%) and decreased in the gastrocnemius (36%) in -Fe. Liver and kidney PEPCK activities were increased similarly at exhaustion in both groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献