Fever and thermogenesis in response to bacterial endotoxin involve macrophage-dependent mechanisms in rats

Author:

Derijk R. H.1,Strijbos P. J.1,van Rooijen N.1,Rothwell N. J.1,Berkenbosch F.1

Affiliation:

1. Department of Pharmacology, Free University, Amsterdam, The Netherlands.

Abstract

Increases in thermogenesis and body temperature (fever) frequently accompany infection or injury and are thought to be mediated by endogenous pyrogens (e.g. cytokines), which are released from activated immune cells such as macrophages. Therefore, we have investigated the effect of selective elimination of peripheral macrophages on the changes in oxygen consumption (VO2) and colonic temperature in response to bacterial lipopolysaccharide (LPS) in the rat. Peripheral macrophages were depleted by intravenous injection of liposomes containing the drug dichloromethylene diphosphonate (Cl2MDP). Resting oxygen consumption and colonic temperatures were not affected by macrophage elimination. In intact rats, peripheral injection of LPS (0.1-0.5 mg/kg) elicited an increase in colonic temperature and in oxygen consumption that declined at higher doses (2.5 mg/kg). The pyrogenic and thermogenic responses to LPS were significantly attenuated in rats in which peripheral macrophages were eliminated. Previously, we have reported that elimination of macrophages blunts the plasma interleukin-1 (IL-1) response to LPS. Here we show that elimination of macrophages does not affect the increase in plasma IL-6 concentrations in response to LPS. These data indicate that the pyrogenic and thermogenic responses to LPS are at least in part dependent on mechanisms involving peripheral macrophages, and that peripherally produced IL-1 rather than IL-6 may be an important mediator of the changes in oxygen consumption and colonic temperature in response to LPS.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3