Prior heavy exercise elevates pyruvate dehydrogenase activity and muscle oxygenation and speeds O2uptake kinetics during moderate exercise in older adults

Author:

Gurd Brendon J.,Peters Sandra J.,Heigenhauser George J. F.,LeBlanc Paul J.,Doherty Timothy J.,Paterson Donald H.,Kowalchuk John M.

Abstract

The adaptation of pulmonary oxygen uptake (V̇o2p) kinetics during the transition to moderate-intensity exercise is slowed in older compared with younger adults; however, this response is faster following a prior bout of heavy-intensity exercise. We have examined V̇o2pkinetics, pyruvate dehydrogenase (PDH) activation, muscle metabolite contents, and muscle deoxygenation in older adults [ n = 6; 70 ± 5 (67–74) yr] during moderate-intensity exercise (Mod1) and during moderate-intensity exercise preceded by heavy-intensity warm-up exercise (Mod2). The phase 2 V̇o2ptime constant (τV̇o2p) was reduced ( P < 0.05) in Mod2(29 ± 5 s) compared with Mod1(39 ± 14 s). PDH activity was elevated ( P < 0.05) at baseline prior to Mod2(2.1 ± 0.6 vs. 1.2 ± 0.3 mmol acetyl-CoA·min−1·kg wet wt−1), and the delay in attaining end-exercise activity was abolished. Phosphocreatine breakdown during exercise was reduced ( P < 0.05) at both 30 s and 6 min in Mod2compared with Mod1. Near-infrared spectroscopy-derived indices of muscle oxygenation were elevated both prior to and throughout Mod2, while muscle deoxygenation kinetics were not different between exercise bouts consistent with elevated perfusion and O2availability. These results suggest that in older adults, faster V̇o2pkinetics following prior heavy-intensity exercise are likely a result of prior activation of mitochondrial enzyme activity in combination with elevated muscle perfusion and O2availability.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3