Renal and blood pressure phenotype in 18-mo-old bradykinin B2R(-/-)CRD mice

Author:

Harrison-Bernard Lisa M.,Dipp Susana,El-Dahr Samir S.

Abstract

Aberrant gene-environment interactions are implicated in the pathogenesis of congenital renal dysgenesis (CRD), a leading cause of renal failure in infants and children. We have recently developed an animal model of CRD that is caused by gestational salt stress (5% NaCl diet; HS) of bradykinin B2R null mice [B2R(-/-)CRD; El-Dahr SS, Harrison-Bernard LM, Dipp S, Yosipiv IV, and Meleg-Smith S. Physiol Genomics 3: 121-131, 2000.]. Developing B2R(-/-)CRD mice exhibit tubular and glomerular cysts, stromal expansion, and loss of corticomedullary differentiation. In addition, B2R(-/-)CRD mice exhibit transient hypertension from 2 to 4 mo of age. The present study was designed to determine the long-term consequences of CRD on renal morphology and salt sensitivity of blood pressure in B2R(-/-)CRD mice. One-year- and 18-mo-old B2R(-/-)CRD mice exhibited stunted renal growth, glomerular cystic abnormalities, and collecting duct ectasia. Moreover, tumors of mesenchymal cell origin emerged in the dysplastic kidneys of 90% of 1-yr-old and 100% of 18-mo-old B2R(-/-)CRD mice but not in age-matched B2R(-/-) or wild-type mice. When challenged with an HS diet, 18-mo-old B2R(-/-)CRD exhibited a significant rise in systolic and diastolic blood pressures and more pronounced natriuresis and diuresis compared with salt-loaded 18-mo-old wild-type mice. Kidney aquaporin-2 expression was decreased by 50%, whereas renin, ANG type 1 receptor, and Na+-K+-ATPase levels were not different in B2R(-/-)CRD mice compared with controls. In conclusion, this study demonstrates that B2R(-/-)CRD mice exhibit permanent phenotypic and functional abnormalities in renal growth and differentiation. This novel model of human disease links gene-environment interactions with renal development and blood pressure homeostasis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3