Accelerated age-related decline in renal and vascular function in female rats following early-life growth restriction

Author:

Black M. Jane1,Lim Kyungjoon1,Zimanyi Monika A.1,Sampson Amanda K.2,Bubb Kristen J.2,Flower Rebecca L.2,Parkington Helena C.2,Tare Marianne2,Denton Kate M.2

Affiliation:

1. Department of Anatomy, Monash University, Clayton, Victoria, Australia and Developmental Biology; and

2. Department of Physiology, Monash University, Clayton, Victoria, Australia

Abstract

Many studies report sexual dimorphism in the fetal programming of adult disease. We hypothesized that there would be differences in the age-related decline in renal function between male and female intrauterine growth-restricted rats. Early-life growth restriction was induced in rat offspring by administering a low-protein diet (LPD; 8.7% casein) to dams during pregnancy and lactation. Control dams were fed a normal-protein diet (NPD; 20% casein). Mean arterial pressure (MAP) and renal structure and function were assessed in 32- and 100-wk-old offspring. Mesenteric artery function was examined at 100 wk using myography. At 3 days of age, body weight was ∼24% lower ( P < 0.0001) in LPD offspring; this difference was still apparent at 32 wk but not at 100 wk of age. MAP was not different between the male NPD and LPD groups at either age. However, MAP was greater in LPD females compared with NPD females at 100 wk of age (∼10 mmHg; P < 0.001). Glomerular filtration rate declined with age in the NPD male, LPD male and LPD female offspring (∼45%, all P < 0.05), but not in NPD female offspring. Mesenteric arteries in the aged LPD females had reduced sensitivity to nitric oxide donors compared with their NPD counterparts, suggesting that vascular dysfunction may contribute to the increased risk of disease in aged females. In conclusion, females growth-restricted in early life were no longer protected from an age-related decline in renal and arterial function, and this was associated with increased arterial pressure without evidence of renal structural damage.

Funder

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3