Maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells

Author:

Haverinen Jaakko1,Abramochkin Denis V.23,Kamkin Andre3,Vornanen Matti1

Affiliation:

1. Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland;

2. Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, Moscow, Russia; and

3. Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova, Moscow, Russia

Abstract

Temperature-induced changes in cardiac output (Q̇) in fish are largely dependent on thermal modulation of heart rate ( fH), and at high temperatures Q̇ collapses due to heat-dependent depression of fH. This study tests the hypothesis that firing rate of sinoatrial pacemaker cells sets the upper thermal limit of fH in vivo. To this end, temperature dependence of action potential (AP) frequency of enzymatically isolated pacemaker cells (pacemaker rate, fPM), spontaneous beating rate of isolated sinoatrial preparations ( fSA), and in vivo fH of the cold-acclimated (4°C) brown trout ( Salmo trutta fario) were compared under acute thermal challenges. With rising temperature, fPM steadily increased because of the acceleration of diastolic depolarization and shortening of AP duration up to the break point temperature (TBP) of 24.0 ± 0.37°C, at which point the electrical activity abruptly ceased. The maximum fPM at TBP was much higher [193 ± 21.0 beats per minute (bpm)] than the peak fSA (94.3 ± 6.0 bpm at 24.1°C) or peak fH (76.7 ± 2.4 at 15.7 ± 0.82°C) ( P < 0.05). These findings strongly suggest that the frequency generator of the sinoatrial pacemaker cells does not limit fH at high temperatures in the brown trout in vivo.

Funder

Suomen Akatemia (Academy of Finland)

Russian Science Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3