Affiliation:
1. Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia;
2. Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
3. Université Libre de Bruxelles, Brussels, Belgium
Abstract
Previously, we have shown that A2A adenosine receptor (A2AAR) mediates aortic relaxation via cytochrome P-450 (CYP)-epoxygenases. However, the signaling mechanism is not understood properly. We hypothesized that ATP-sensitive K+ (KATP) channels play an important role in A2AAR-mediated relaxation. Organ bath and Western blot experiments were done using isolated aorta from A2AKO and corresponding wild-type (WT) mice. Aortic rings from WT and A2A knockout (KO) mice were precontracted with submaximal dose of phenylephrine (PE, 10−6 M), and concentration-response curves for pinacidil, cromakalim (nonselective KATP openers), and diazoxide (mitochondrial KATP opener) were obtained. Diazoxide did not have any relaxation effect on PE-precontracted tissues, whereas relaxation to pinacidil (48.09 ± 5.23% in WT vs. 25.41 ± 2.73% in A2AKO; P < 0.05) and cromakalim (51.19 ± 2.05% in WT vs. 38.50 ± 2.26% in A2AKO; P < 0.05) was higher in WT than A2AKO aorta. This suggested the involvement of sarcolemmal rather than mitochondrial KATP channels. Endothelium removal, treatment with SCH 58651 (A2AAR antagonist; 10−6 M), NG-nitro-l-arginine methyl ester (l-NAME, nitric oxide synthase inhibitor) and methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH, CYP-epoxygenases inhibitor; 10−5 M) significantly reduced pinacidil-induced relaxation in WT compared with controls, whereas these treatments did not have any effect in A2AKO aorta. Glibenclamide (KATP channel inhibitor, 10−5 M) blocked 2- p-(2-carboxyethyl)phenethylamino-5′ N-ethylcarboxamido adenosine hydrochloride (CGS 21680, A2AAR agonist)-induced relaxation in WT and changed 5′- N-ethylcarboxamide (NECA) (nonselective adenosine analog)-induced response to higher contraction in WT and A2AKO. 5-Hydroxydecanoate (5-HD, mitochondrial KATP channel inhibitor, 10−4 M) had no effect on CGS 21680-mediated response in WT aorta. Our data suggest that A2AAR-mediated vasorelaxation occurs through opening of sarcolemmal KATP channels via CYP-epoxygenases and possibly, nitric oxide, contributing to pinacidil-induced responses.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献