CYP-epoxygenases contribute to A2A receptor-mediated aortic relaxation via sarcolemmal KATP channels

Author:

Ponnoth Dovenia S.1,Nayeem Mohammed A.1,Tilley Stephen L.2,Ledent Catherine3,Jamal Mustafa S.1

Affiliation:

1. Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia;

2. Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and

3. Université Libre de Bruxelles, Brussels, Belgium

Abstract

Previously, we have shown that A2A adenosine receptor (A2AAR) mediates aortic relaxation via cytochrome P-450 (CYP)-epoxygenases. However, the signaling mechanism is not understood properly. We hypothesized that ATP-sensitive K+ (KATP) channels play an important role in A2AAR-mediated relaxation. Organ bath and Western blot experiments were done using isolated aorta from A2AKO and corresponding wild-type (WT) mice. Aortic rings from WT and A2A knockout (KO) mice were precontracted with submaximal dose of phenylephrine (PE, 10−6 M), and concentration-response curves for pinacidil, cromakalim (nonselective KATP openers), and diazoxide (mitochondrial KATP opener) were obtained. Diazoxide did not have any relaxation effect on PE-precontracted tissues, whereas relaxation to pinacidil (48.09 ± 5.23% in WT vs. 25.41 ± 2.73% in A2AKO; P < 0.05) and cromakalim (51.19 ± 2.05% in WT vs. 38.50 ± 2.26% in A2AKO; P < 0.05) was higher in WT than A2AKO aorta. This suggested the involvement of sarcolemmal rather than mitochondrial KATP channels. Endothelium removal, treatment with SCH 58651 (A2AAR antagonist; 10−6 M), NG-nitro-l-arginine methyl ester (l-NAME, nitric oxide synthase inhibitor) and methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH, CYP-epoxygenases inhibitor; 10−5 M) significantly reduced pinacidil-induced relaxation in WT compared with controls, whereas these treatments did not have any effect in A2AKO aorta. Glibenclamide (KATP channel inhibitor, 10−5 M) blocked 2- p-(2-carboxyethyl)phenethylamino-5′ N-ethylcarboxamido adenosine hydrochloride (CGS 21680, A2AAR agonist)-induced relaxation in WT and changed 5′- N-ethylcarboxamide (NECA) (nonselective adenosine analog)-induced response to higher contraction in WT and A2AKO. 5-Hydroxydecanoate (5-HD, mitochondrial KATP channel inhibitor, 10−4 M) had no effect on CGS 21680-mediated response in WT aorta. Our data suggest that A2AAR-mediated vasorelaxation occurs through opening of sarcolemmal KATP channels via CYP-epoxygenases and possibly, nitric oxide, contributing to pinacidil-induced responses.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3