Independent and interactive effects of thermal stress and mental fatigue on manual dexterity

Author:

Valenza Alessandro12,Charlier Harry1,Bianco Antonino2,Filingeri Davide1ORCID

Affiliation:

1. THERMOSENSELAB, Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom

2. Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy

Abstract

Many occupations and sports require high levels of manual dexterity under thermal stress and mental fatigue. Yet, multistressor studies remain scarce. We quantified the interactive effects of thermal stress and mental fatigue on manual dexterity. Seven males (21.1 ± 1.3 yr) underwent six separate 60-min trials characterized by a combination of three air temperatures (hot, 37°C; neutral, 21°C; cold, 7°C) and two mental fatigue states (MF, mental fatigue induced by a 35-min cognitive battery; no-MF, no mental fatigue). Participants performed complex (O’Connor test) and simple (hand-tool test) manual tasks pre- and posttrial to determine stressor-induced performance changes. We monitored participants’ rectal temperature and hand skin temperature (Thand) continuously and assessed the reaction time (hand-click test) and subjective mental fatigue (5-point scale). Thermal stress ( P < 0.0001), but not mental fatigue ( P = 0.290), modulated Thand (heat, +3.3°C [95% CI: +0.2, +6.5]; cold, −7.5°C [−10.7, −4.4]). Mental fatigue ( P = 0.021), but not thermal stress ( P = 0.646), slowed the reaction time (∼10%) and increased subjective fatigue. Thermal stress and mental fatigue had an interactive effect on the complex manual task ( P = 0.040), with cold-no-MF decreasing the performance by −22% [−39, −5], whereas neutral-MF, cold-MF, and heat-MF by −36% [−53, −19], −34% [−52, −17], and −36% [−53, −19], respectively. Only mental fatigue decreased the performance in the simple manual task (−30% [−43, −16] across all thermal conditions; P = 0.002). Cold stress-induced impairments in complex manipulation increase with mental fatigue; yet combined stressors’ effects are no greater than those of mental fatigue alone, which also impairs simple manipulation. Mental fatigue poses a greater challenge to manual dexterity than thermal stress.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3